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Swampland Distance Conjecture

.. ] L. (Ooguri-Vafa '06)
Infinite distance limits are

accompanied by infinite towers of
particles become exponentially light
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Emergent String Conjecture (&'
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1. Decompactification limit 2. Emergent string limit
1
Mtower = E < Tstring Mtower = Tstring

(See Daniel’s talk) 3
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Emergent String Conjecture
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1. Decompactification limit

1
Mtower = E < V Tstringj

(Lee, Lerche,
Weigand "19)

Suppose that
2
Tstring ~ MD

then since (with k = D — d)
d—2 karD—2
M4=2 ~ REME
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Tstring ~



(Lee, Lerche,

Emergent String Conjecture 2.5
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Emergent String Conjecture {5~ %
Predicts strings satisfying Tying /Mg — 0
in every asymptotic limit, except for rare
case of decompactification to a theory
without strings (e.g., 11d M-theory)

Test this prediction in vector multiplet
moduli space of 5d A/ = 1 theories
(arising from M-theory on a CY3)

(NOTE: Overall volume is hypermultiplet.)
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5d N=1 SUGRA
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5d N=1 SUGRA
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Homogeneous & dual coordinates
Convenient to projectivize: Y/ = \Y!
FlY] # O has Weight3

_ pos. definite
Iy = .7:2 ]:I]:J ]—'FI‘] weight -2
Y = — ]:I are the dual coordinates

F weight —1

I - the map between coords and dual
Y'Y coords is bijective in the interior
of the moduli space
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Cones and the Moduli Space

A
Clix =Crx + NQ1QuQk

F|Y]is otherwise
exact! (unlike in 4d)

Extended Kihler cone K



Cones and the Moduli Space
A

Extended Kihler cone K Dual coordinate cone ‘K

K CK*
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A
Cone generated
by calibrated 4-cycles
(effective divisors)
A2
Q i.e., the cone generated
t @1 by the BPS strings

(from wrapped M5s)

Effective cone &
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Strings and the Effective Cone
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Rudelius ‘21)

Effective cone & Dual of dual coord cone



Tensionless strings at boundaries?

A
Naively sufficient to ensure

that some BPS string becomes
tensionless at every boundary
of the moduli space

(infinite distance or not)

° * . ) .
E=XK ...If the effective cone is closed
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Periodic Boundaries

K

Extended Kahler cone can
contain infinitely many flops*

*Thanks to C. Brodie, A. Constantin, A. Lukas, F. Ruehle for discussions
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Extended Kahler cone can /\/
contain infinitely many flops Boundaries have

irrational slopes!
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Periodic Boundaries

X _ 3
this ex.
Extended Kahler cone can Boundaries have
contain infinitely many flops irrational slopes!

Charge quantization —> 0¢& Z & problem!
€ CHull(EN Q") = E&T “rational closure”
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Periodic Boundaries .
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Moduli space has no infinite dist boundary! 11




The (birational) cone conjecture

There exists a rational polyhedral fund.
domain J for the automorphism grp G
acting on K™

Morrison ‘93, ‘94  (See also
Kawamata ‘97 Fabian’s talk)

Figure:
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The (birational) cone conjecture
There exists a rational polyhedral fund.
domain F¢ for the automorphism grp G

aCtlng on fK Morrison ‘93, ‘94  (See also
Kawamata ‘97 Fabian’s talk)

F . with appr. boundary
idents is the physical
moduli space

—
B’ dary points outside
KT are unphysical
and unreachable

Figure:

N. Gendler 12
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13



The WGC for BPS Strings

The charges of the BPS strings should span
the cone where BPS = Black String Extremal

YI:QI
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K

BPS black strings exist throughout K+
(c.f., Alim, BH, Rudelius '21)
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The WGC for BPS Strings

The charges of the BPS strings should span
the cone where BPS = Black String Extremal

— KT C & to satisfy WGC for BPS strings!

(nontrivial math conjecture) 13




Tensionless strings at boundaries?

Cone conjecture: physical boundaries lie inside JC+
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Tensionless strings at boundaries?

Cone conjecture: physical boundaries lie inside JC+
Either:
1. F >0 as Y — V! < infinite distance

Divisor @I = Y*I shrinks /(string WGC)

since Y| € K+ C & is effective, there
are indeed tensionless strings in this limit

2. F#0as Y — Y] < finite distance

(In fact, there are tensionless strings anyway,
due to a shrinking divisor—>& = &)



Sublattice WGC for strings?

Since JF; finitely generated, cone conjecture
+ string WGC imply:

There exists k € Z such that kI'gtring M K+
is generated by non-negative integer LCs of the
BPS string charges
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Sublattice WGC for strings?

Since JF; finitely generated, cone conjecture
+ string WGC imply:

There exists k € Z such that kI'gtring M K+
is generated by non-negative integer LCs of the
BPS string charges

This is a BPS special case of

String sublattice WGC: there exists k € 7 s.t.
kTString is generated by non-negative integer LCs
of superextremal string charges
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Sublattice WGC for strings?

Since JF; finitely generated, cone conjecture
+ string WGC imply:

There exists k € Z such that kI'gtring M K+
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Infinite towers?

To ensure the presence of infinite towers required
by the SDC, we need by analogy:

Infinite towers of BPS particles within KT
due to BPS tower WGC (see Alim, BH, Rudelius ’21)

16



Infinite towers?

To ensure the presence of infinite towers required
by the SDC, we need by analogy:

Infinite towers of BPS particles within KT
due to BPS tower WGC (see Alim, BH, Rudelius ’21)

Dual-coordinate cone conjecture:
There exists a rational polyhedral fund.

domain 9 for the automorphism group
G acting on fKJr (@ novel math conjecture)

16



Infinite towers?

To ensure the presence of infinite towers required
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Infinite towers of BPS particles within KT
due to BPS tower WGC (see Alim, BH, Rudelius ’21)

Dual-coordinate cone conjecture:
There exists a rational polyhedral fund.

domain 9 for the automorphism group
G acting on fKJr (@ novel math conjecture)

Follows from cone conjecture if GG

is a Coxeter group (true in simple exs) 6



Infinite towers?

Q
To ensure the presence of infinite tr \,&‘Q’ "lired
by the SDC, we need by analog* ’l/\)@

ye +
Infinite towers of BPS part’ Q@ QO. K
due to BPS tower WGC 6\6“/( _H, Rudelius '21)

Dual-coordinats G} (}O jecture:

There existe ‘\*O @ .« polyhedral fund.

domain - \6@ 0" automorphism group

G act \\’L \\S\‘b (@ novel math conjecture)
e

Fo .rom cone conjecture if G

is a oxeter group (true in simple exs)
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Finiteness / no global symmetries?
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Finiteness / no global symmetries?

No global symmetries: g — 0 can only occur at
infinite distance.

Can be proved in 5d A/ = 1 with the assumption:

Strong birational cone conjecture:

F ¢ in the birational cone conjecture can be chosen
to intersect a finite number of phases, with each
intersection finitely-generated

If so, the reasoning of BH, Rudelius '20 applies:
g — 0 iff we approach inf. distance boundary

17
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KK modes vs emergent strings?
What kind of inf. distance limit occurs at Y/ — Y*I?
Choose Y,/ = ¢/ WLOG
F=a + Bi(YO)2Y" + 4, YOY'YI 4 N YIYVIYF

F—0asY!l Y/
Can argue that 3; # 0 leads to 6d decompct. limit
whereas 3; = 0 leads to an emergent string limit
[Note: if B3; # 0then Q! o 6% is a Kollar divisor
(Y*I € KT C & as prev. argued)

Signals elliptic fibration of 6d F-theory model!]
18



Summary

There is a rich interplay between the SDC, emergent
strings, the WGC, no global symmetries, and
finiteness in 5d ' = 1 theories and some existing
and novel conjectures about the “tameness” of
certain geometric cones

19
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